406 research outputs found

    Principles and applications of balanced SSFP techniques

    Get PDF
    During the past 5years balanced steady-state free precession (SSFP) has become increasingly important for diagnostic and functional imaging. Balanced SSFP is characterized by two unique features: it offers a very high signal-to noise ratio and a T2/T1-weighted image contrast. This article focuses on the physical principles, on the signal formation, and on the resulting properties of balanced SSFP. Mechanisms for contrast modification, recent clinical application, and potential extensions of this technique are discusse

    Echo-dephased steady state free precession

    Get PDF
    Objective: To introduce a novel positive contrast method for passive localization and visualization of paramagnetic susceptibility markers. Materials and methods: The novel approach is based on an echo-dephased steady-state free precession (SSFP) sequence. Gradients dephase any signal by ±π at the centered echo-time (TE =TR/2) and induce a total dephasing of ±2π per pixel within TR. This ensures that background tissues do not contribute to signal formation and thus appear dark. However, within the close vicinity of the paramagnetic marker, local gradient fields compensate for the intrinsic dephasing to form an echo. Conceptual issues of gradient compensation and its visualization characteristics are analyzed. The feasibility of the proposed technique for MR-guided intravascular interventions is demonstrated using flow phantom. Results: Echo-dephased SSFP is able to localize and visualize paramagnetic marker with excellent suppression of the background signals. The flow phantom experiments concluded that reliable tracking of the interventional guidewire is feasible using echo-dephased SSFP. Conclusion: With newly introduced echo-dephased SSFP approach, accurate and reliable visualization of paramagnetic interventional device is feasibl

    Task-related edge density (TED) - a new method for revealing large-scale network formation in fMRI data of the human brain

    Full text link
    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges in a brain network that differentially respond in unison to a task onset and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.Comment: 21 pages, 11 figure

    Intraoperative determination of the load-displacement behavior of scoliotic spinal motion segments: preliminary clinical results

    Get PDF
    Introduction: Spinal fusion is a widely and successfully performed strategy for the treatment of spinal deformities and degenerative diseases. The general approach has been to stabilize the spine with implants so that a solid bony fusion between the vertebrae can develop. However, new implant designs have emerged that aim at preservation or restoration of the motion of the spinal segment. In addition to static, load sharing principles, these designs also require a profound knowledge of kinematic and dynamic properties to properly characterise the in vivo performance of the implants. Methods: To address this, an apparatus was developed that enables the intraoperative determination of the load-displacement behavior of spinal motion segments. The apparatus consists of a sensor-equipped distractor to measure the applied force between the transverse processes, and an optoelectronic camera to track the motion of vertebrae and the distractor. In this intraoperative trial, measurements from two patients with adolescent idiopathic scoliosis with right thoracic curves were made at four motion segments each. Results: At a lateral bending moment of 5Nm, the mean flexibility of all eight motion segments was 0.18±0.08°/Nm on the convex side and 0.24±0.11°/Nm on the concave side. Discussion: The results agree with published data obtained from cadaver studies with and without axial preload. Intraoperatively acquired data with this method may serve as an input for mathematical models and contribute to the development of new implants and treatment strategie

    Human In-vivo MR Current Density Imaging (MRCDI) Based on Optimized Multi-echo Spin Echo (MESE)

    Get PDF
    MRCDI aims at imaging an externally injected current flow in the human body, and might be useful for many biomedical applications. However, the method requires very sensitive measurement of the current-induced magnetic field component ?Bz,c parallel to main field. We systematically optimized MESE to determine its most efficient parameters. In one of the first human in-vivo applications of MRCDI, the optimized sequence was successfully used to image the ?Bz,c distribution in the brain caused by a two-electrode montage, as confirmed by finite-element calculations of ?Bz,c. Further improvements will be performed to increase its robustness to field drifts

    Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

    Get PDF
    Purpose Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (ΔBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. Theory and Methods Considering T1, T2, and math formula relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence parameters, are analytically analyzed and simulated. The theoretical results are experimentally validated in a saline-filled homogenous spherical phantom with relaxation parameters similar to brain tissue. Measurement of ΔBz,c is also performed in a cylindrical phantom with saline and chicken meat. Results The efficiency simulations and experimental results are in good agreement. When using optimal parameters, ΔBz,c can be reliably measured in the phantom even at injected current strengths of 1 mA or lower for both sequence types. The importance of using proper crusher gradient selection on the phase evolution in a MESE experiment is also demonstrated. Conclusion The efficiencies observed with the optimized sequence parameters will likely render in-vivo human brain MREIT feasible

    Signal characteristics of focal bone marrow lesions in patients with multiple myeloma using whole body T1w-TSE, T2w-STIR and diffusion-weighted imaging with background suppression

    Get PDF
    Objective: This study analyses the diagnostic potential of Diffusion-Weighted Imaging with Background Suppression (DWIBS) in the detection of focal bone marrow lesions from multiple myeloma. The signal and contrast properties of DWIBS are evaluated in correlation with the serum concentration of M-component (MC) and compared with established T1- and T2-weighted sequences. Methods: Data from 103 consecutive studies in 81 patients are analysed retrospectively. Signal intensities and apparent Diffusion Coefficients (ADC) of 79 focal lesions in the lumbar spine or pelvis of 38 patients are determined and contrast-to-noise-ratio (CNR) is calculated. Data from patients with low (20g/dL) MC are evaluated separately. Results: Signal intensities of focal myeloma lesions on T2w-STIR vary significantly depending on the MC, which leads to a loss in CNR in patients with high MC. No signal variation is observed for T1w-TSE and DWIBS. The CNR values provided by DWIBS in patients with high MC are slightly higher than those of T2w-STIR. ADC values in patients with low MC are significantly higher than in patients with high MC. Conclusion: Whole-body DWIBS has the potential to improve the conspicuity of focal myeloma lesions and provides additional biological information by ADC quantificatio

    Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI

    Get PDF
    Conventional blood oxygenation level-dependent (BOLD) based functional magnetic resonance imaging (fMRI) is accompanied by substantial acoustic gradient noise. This noise can influence the performance as well as neuronal activations. Conventional fMRI typically has a pulsed noise component, which is a particularly efficient auditory stimulus. We investigated whether the elimination of this pulsed noise component in a recent modification of continuous-sound fMRI modifies neuronal activations in a cognitively demanding non-auditory working memory task. Sixteen normal subjects performed a letter variant n-back task. Brain activity and psychomotor performance was examined during fMRI with continuous-sound fMRI and conventional fMRI. We found greater BOLD responses in bilateral medial frontal gyrus, left middle frontal gyrus, left middle temporal gyrus, left hippocampus, right superior frontal gyrus, right precuneus and right cingulate gyrus with continuous-sound compared to conventional fMRI. Conversely, BOLD responses were greater in bilateral cingulate gyrus, left middle and superior frontal gyrus and right lingual gyrus with conventional compared to continuous-sound fMRI. There were no differences in psychomotor performance between both scanning protocols. Although behavioral performance was not affected, acoustic gradient noise interferes with neuronal activations in non-auditory cognitive tasks and represents a putative systematic confoun

    Human In-vivo Brain MR Current Density Imaging (MRCDI) based on Steady-state Free Precession Free Induction Decay (SSFP-FID)

    Get PDF
    MRCDI is a novel technique for non-invasive measurement of weak currents in the human head, which is important in several neuroscience applications. Here, we present reliable in-vivo MRCDI measurements in the human brain based on SSFP-FID, yielding an unprecedented accuracy. We demonstrate the destructive influences of stray magnetic fields caused by the current passing through feeding cables, and propose a correction method. Also, we show inter-individual differences in MRCDI measurements for two different current profiles, and compare the measurements with simulations based on individualized head models. The simulations of the current-induced magnetic fields show good agreement with in-vivo brain measurements
    • …
    corecore